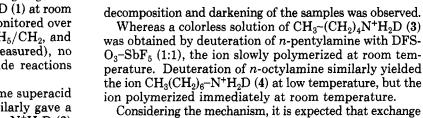
Observation of Methyl H-D Exchange for CH₃(CH₂)₃N⁺H₂D in DFSO₃-SbF₅^{1a}

Summary: H-D exchange has been observed in superacid media at room temperature for $CH_3(CH_2)_3$ -N⁺H₂D ion at the methyl group; it was monitored by ¹H NMR.


Sir: Activation of C-H and C-C bonds by protolysis in superacid media has been elegantly demonstrated by Olah and co-workers.^{1b} Thus, hydrogen-deuterium exchange must be considered a typical electrophilic substitution at saturated carbon.² In line with theoretical calculations and IR studies,3 H-D exchange of molecular hydrogen with deuterium under pressure in deuterated superacid solvents helped establish the involvement of a trigonal isotopic $H_3^{+.4}$ Gold and co-workers⁵ were able to observe directly all three possible H–D exchange species (H_3O^+, H_2DO^+) and HD_2O^+) by NMR, using H_2O as base in deuterated magic acid. In relation to our detailed studies of the acidity of superacid media and basicity of weak bases by DNMR,^{6,7} we now report preliminary results of a study of H-D exchange in several long-chain aliphatic amines in DFSO₃ containing various amounts of SbF₅.

Deuteration of *n*-propylamine with a threefold excess of $DFSO_3$ -SbF₅ (58.3%) in SO₂ followed by slow evaporation of solvent under a stream of dry nitrogen gave a colorless solution of the ion C_2H_5 - CH_2 - N^+H_2D (1) at room temperature. The ¹H NMR signals were monitored over a period of three weeks $(C_2H_5/NH_2D^+, C_2H_5/CH_2)$, and $C_2H_5/CH_2^+NH_2D^+$ integral ratios were measured), no noticeable change was observed and no side reactions detected.

Deuteration of *n*-butylamine with the same superacid system and under identical conditions similarly gave a clean colorless solution of the ion $C_3H_7-CH_2-N^+H_2D$ (2) which was stable at room temperature after removal of SO₂. In contrast to the behavior of ion 1, H–D exchange of the methyl protons was observed for 2 with simultaneous formation of the protio-superacid. A plot of the variation in the C_3H_7/NH_2D^+ integral ratio vs. time (Figure 1, curve I) indicates that H–D exchange is initially fast (qualitatively) but gradually slows down over a period of 2 weeks. In order to account for any side reactions which might have occurred resulting in proton removal from the side chain, in control experiments n-butylamine was protonated in light acid and the integral ratios were monitored and plotted against time (Figure 1, curve II). Subtration of the curves I and II resulted in curve III which is indicative of the magnitude of H-D exchange in the absence of any side reactions.

In control experiments we found that H-D exchange is taking place in ion 2 even when the acidity (H_0 function) of the superacid solutions is considerably reduced from DFSO₃-SbF₅ (58.3%) down to DFSO₃-SbF₅ (22%).⁶ In neat DFSO₃, however, exchange was very slow. With superacid solutions containing more than 63% SbF₅ slow

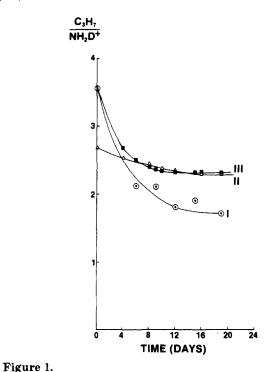
Trans. 2 1985, 865.

Considering the mechanism, it is expected that exchange at C₄ should be faster than at other carbons. The substitution mechanism which goes through a five-coordinated carbon, involves a doubly charged cation as an intermediate or a nearly doubly charged transition state in which charge-charge repulsion will diminish with distance. Olah and co-workers found that aliphatic carbodications can be generated in superacid media when the carbocation centers are separated by at least two carbon atoms.⁸ This infers that even though methyl H-D exchange for ion 2 is too slow to be measurable at room temperature, it should be detectable under forcing conditions or at higher acidities $(DF-SbF_5)$. We plan to test this argument.

The initial concentration of the acid is given by eq 1. Since the molar ratio of acid to base is 3:1 and the formation of ion 2 is complete, this equation can be transformed into eq 2.

$$[DFSO_3]_{initial} = [DFSO_3]_{stoich} - [amine]_{stoich}$$
(1)

$$[DFSO_3]_{initial} = \frac{2}{3} [DFSO_3]_{stoich}$$
(2)


Equation 3 represents the ratio of deuterated and light acid after the exchange, and eq 4 shows the total exchangeable hydrogens (H + D) in the system.

$$\frac{D \text{ in acid}}{H + D \text{ in acid}} = \frac{D \text{ in methyl}}{H + D \text{ in methyl}}$$
(3)

$$[DFSO_3]_{initial} + 3 [CH_3] = \frac{3}{3} [DFSO_3]_{stoich} + 3(\frac{1}{3})$$
$$[DFSO_3]_{stoich} = \frac{5}{3} [DFSO_3]_{stoich}$$
(4)

On this pool of H + D, H is provided only by the methyl group and D is supplied by $DFSO_3$ initial. Thus the final

0022-3263/86/1951-2394\$01.50/0 © 1986 American Chemical Society

 ^{(1) (}a) Presented at the 18th Central Regional Meeting of the American Chemical Society, Bowling Green, OH, June 1986. (b) For a detailed discussion, see: Olah, G. A.; Surya Prakask, G. K.; Sommer, J. Superacids; Wiley-Interscience: New York, 1985; Chapter 5.
 (2) Olah, G. A. Angew. Chem., Int. Ed. Engl. 1973, 12, 173.
 (3) Oka, T. Phys. Rev. Lett. 1980, 43, 531.
 (4) Olah, G. A.; Shen, J., Schlosherg, R. H. J. Am. Chem. Soc. 1970.

^{92. 3831}

mun. 1976, 397. (6) Gold, V.; Laali, K.; Morris, K. P.; Zdunek, L. J. Chem. Soc., Perkin

Trans 2 1985, 859. (7) Gold, V.; Laali, K.; Morris, K. P.; Zdunek, L. J. Chem. Soc., Perkin

⁽⁴⁾ Olah, G. A.; Shen, J., Schlosberg, R. H. J. Am. Chem. Soc. 1970, (5) Gold, V.; Grant, J. L.; Morris, K. P. J. Chem. Soc., Chem. Com-

⁽⁸⁾ Bollinger, J. M.; Cupas, C. A.; Friday, K. J.; Woolfe, M. L.; Olah, G. A. J. Am. Chem. Soc. 1967, 89.

H/H + D ratio in every species of the exchanging system can be given by eq 5.

$$\frac{3[CH_3]_{\text{stoich}}}{\sqrt[5]{[DFSO_3]_{\text{stoich}}}} = \frac{[DFSO_3]_{\text{stoich}}}{\sqrt[5]{[DFSO_3]_{\text{stoich}}}} = \sqrt[3]{5}$$
(5)

Accordingly, the final average number of hydrogens in C_3H_7 should be $4 + 3^3/_5 = 5.8$ and the final C_3H_7/NH_2 ratio: 5.8/2 = 2.9. However, the experimentally observed C_3H_7/NH_2 integral ratio falls below this limit (2.3), suggesting that additional processes must be operative which remove C_3H_7 .

We are currently exploring these exchange phenomena in more detail by ²D and ¹³C NMR.

Acknowledgment. Partial support at Kent State University through a start-up fund to K. Laali for equipment purchase is gratefully acknowledged. Support at King's College was provided by SERC and a NATO research grant.

Registry No. 1, 102283-88-5; 2, 102283-89-6; 3, 102283-90-9; 4, 102283-91-0; n-propylamine, 107-10-8; n-butylamine, 109-73-9; n-pentylamine, 110-58-7; n-octylamine, 111-86-4; hydrogen, 1333-74-0.

[†]Deceased October 1985.

Khosrow Laali*

Department of Chemistry Kent State University Kent, Ohio 44242

Victor Gold[†]

Department of Chemistry King's College Strand, London WC2R 2LS Received November 19, 1985

[2 + 2] Cycloaddition of Sulfonyl and Acyl **Isocyanates to Glycals**

Summary: [2 + 2] Cycloaddition of sulfonyl and acyl isocyanates 1-3 to glycals 4-8 proceeds stereospecifically to afford the β -lactam ring anti with respect to the C-3 substituent. Unblocking of the electron-withdrawing N-substituent produces the relatively stable β -lactams.

Sir: [2 + 2] cycloaddition of active isocyanates to 3,4dihydro-2H-pyran derivatives has already been attempted several times,¹⁻⁵ but in only a few cases were the corresponding β -lactams obtained.^{1,2,5} Simple derivatives of 3,4-dihydro-2*H*-pyran afforded open-chain α,β -unsaturated amides.¹⁻⁵ whereas tri-O-acetyl-D-glucal was found to be unreactive.⁶ It can be assumed that the nature of substituents attached to the dihydropyran ring determines the equilibrium state of this reversible cycloaddition,⁷⁻⁹ which

in the case of acetylated glycals under normal pressure is entirely shifted toward substrates.⁶ Application of 10 kbar pressure, however, resulted in cycloaddition of tosyl and trichloroacetyl isocyanate (1 and 3) to acetylated glycals and led to the formation of unstable β -lactams.⁷

Assuming that thermodynamics controls product formation in these reactions, we chose to investigate the cycloaddition of isocyanates 1-3 to glycals 4-8 having nonpolar blocking groups, under normal pressure. The reactions were performed in absolute CDCl₃ at room temperature and were monitored by ¹H NMR spectroscopy.¹⁰

Cycloaddition of 1 and 2 (3 molar equiv) to glycals 4-8(1 equiv) proceeds regio- and stereospecifically with formation of the β -lactam ring anti to the C-3 substituent (Scheme I). Tosyl isocyanate (1) gives the respective β -lactams 9 after 6-40 h in 75-90% yield (Table I). The isocyanate 2 is more reactive under the same conditions. Cycloaddition to all glycals 4-8 is completed in about 2 h, affording 9; thereafter slow decomposition of product is observed. After 20 h substantial amounts (10-60%) of the respective α,β -unsaturated amide 10 is detected.

Trichloroacetyl isocyanate (3) reacts with 4-8 more slowly than sulfonyl isocyanates 1 and 2. Reactions are completed in about 50 h to produce [2 + 2] cycloadducts 9, [4+2] 11, and the open-chain amide 10. In agreement with our earlier findings, 3 adds anti to the C-3 substituent to give cis-fused bicyclic systems 9 and 11. The proportion of products 9:10:11 depends on the reaction time and glycal used. For example, 5 affords after 6 h about 12% of 9a and 18% of 11a, whereas after 50 h 9a becomes the main component (50%) of the mixture and is accompanied by 32% of 10a and 18% of 11a. On the other hand, glycals 7 and 8 furnish [4 + 2] cycloadducts 11b which are more stable than the β -lactams **9b** (Table I).

Our experiments clearly point to low stability of cycloadducts 9. This is certainly caused by an electron-withdrawing group attached to the nitrogen atom. Therefore N-deprotection is necessary before isolation or chemical transformation of 9 are undertaken. Until now attempts to split the sulfonyl substituent without decomposition of the β -lactam ring in 9 were unsuccessful. In case of the trichloroacetyl protecting group, analogously to the trifluoroacetyl group,⁴ addition of benzylamine to the reaction mixture leads to removal of the N-protection to afford stable bicyclic β -lactams. Compounds 12, 13, and 14 were isolated from respective post-reaction mixtures by silica gel chromatography in 30%, 50%, and 40% yield, respectively. Further deprotection with the hydrogen fluoride-pyridine 1:1 complex in THF affords crystalline, stable, water-soluble β -lactams 15 and 16.¹¹

⁽¹⁾ Effenberger, E.; Gleiter, R. Chem. Ber. 1964, 97, 1576.

⁽²⁾ Barrett, A. G. M.; Fenwick, A.; Betts, M. J. J. Chem. Soc., Chem. Commun. 1983, 299.

⁽³⁾ Chan, J. H.; Hall, S. S. J. Org. Chem. 1984, 49, 195.

⁽⁴⁾ Barrett, A. G. M.; Betts, M. J.; Fenwick, A. J. Org. Chem. 1985, 50, 169.

⁽⁵⁾ Chitwood, J. L.; Gott, P. G.; Martin, J. C. J. Org. Chem. 1971, 36, 2228.

⁽⁶⁾ Hall, R. H.; Jordan, A.; Laurens, G. J. J. Chem. Soc. Perkin Trans.
1 1973, 38. Hall, R. H.; Jordan, A.; de Villiers, O. G. Ibid. 1975, 626.
(7) Chmielewski, M.; Kałuza, Z.; Bełzecki, C.; Sałanski, P.; Jurczak, J. Tetrahedron Lett. 1984, 25, 4797.

⁽⁸⁾ Chmielewski, M.; Kałuza, Z.; Bełzecki, C.; Sałanski, P.; Jurczak, J.; Adamowicz, H. Tetrahedron 1985, 41, 2441.

⁽⁹⁾ Chmielewski, M.; Kałuza, Z.; Belzecki, C.; Sałanski, P.; Jurczak, J., in press

⁽¹⁰⁾ The compounds 9 and 11 were characterized by chemical shifts and coupling constants for protons H-1 and H-2, whereas the amides 10 were characterized by chemical shifts of H-1 proton. For example, adducts derived from 3 and 4: 9a [6.02 (d, 1 H, $J_{12} = 5.5$ Hz, H-1), 3.47 (dd, 1 H, $J_{23} = 3.0$ Hz, H-2)] and 11a [6.15 (d, 1 H, $J_{12} = 3.7$ Hz, H-1), 3.47 (dd, 1 H, $J_{23} = 9.0$ Hz, H-2)]; adducts derived from 2 and 4: 9a [5.95 (d, 1 H, $J_{23} = 5.6$ Hz, H-1), 3.40 (dd, 1 H, $J_{23} = 3.2$ Hz, H-2)] and 10a [7.60 (s, 1 H, H-1)]. The composition of the reaction mixture was determined

⁽s, 1 H, H-1)]. The composition of the reaction mixture was determined by the integration of the respective signals. (11) 12: mp 50-54 °C; $[\alpha]_{\rm D}$ +61.5° (c 1, CH₂Cl₂); IR (film) 1760 cm⁻¹; ¹H NMR (CDCl₃) 5.30 (d, 1 H, J₁₂ = 4.6 Hz, H-1), 3.08 (dt, 1 H, J₁₂ + J₂₈] = 6.0 Hz, H-2). 13: mp 74-76 °C; $[\alpha]_{\rm D}$ -5.7° (c 1, CH₂Cl₂); IR (CHCl₃) 3410, 1775 cm⁻¹; ¹H NMR (CCl₄) 5.40 (d, 1 H, J₁₂ = 4.6 Hz, H-1), 3.15 (m, 1 H, H-2). 14: mp 53-57 °C; $[\alpha]_{\rm D}$ -53.5° (c 1, CH₂Cl₂); IR (CHCl₃) 3410, 1775 cm⁻¹; ¹H NMR (CCl₄) 5.30 (d, 1 H, J₁₂ = 4.3 Hz, H-1), 3.12 (m, 1 H, H-2). 15: mp 179-180 °C; $[\alpha]_{\rm D}$ +65.4° (c 1, H₂O); IR (Nujol) 3320, 1715 cm⁻¹; ¹H NMR (Me₂SO-d₆) 5.50 (d, 1 H, J₁₂ = 4.0 Hz, H-1), 3.20 (m, 1 H, H-2). 16: mp 170-171 °C; $[\alpha]_{\rm D}$ -112.4° (c 1, H₂O); IR (Nujol) 3380, 3240, 1750 cm⁻¹; ¹H NMR (Me₂SO-d₆) 5.28 (d, 1 H, J₁₂ = 4.2 Hz, H-1), 3.13 (t, 1 H, H-2). 1 H, H-2).